Beyond The Hype:

Machine Learning & AI for Security Operations

Anthony Tellez, CISSP, CEH, CNDA
Staff Data Scientist- Machine Learning & AI | Splunk
June 2019

HOPPI

Forward-Looking Statements

During the course of this presentation, we may make forward-looking statements regarding future events or the expected performance of the company. We caution you that such statements reflect our current expectations and estimates based on factors currently known to us and that actual events or results could differ materially. For important factors that may cause actual results to differ from those contained in our forward-looking statements, please review our filings with the SEC.

The forward-looking statements made in this presentation are being made as of the time and date of its live presentation. If reviewed after its live presentation, this presentation may not contain current or accurate information. We do not assume any obligation to update any forward-looking statements we may make. In addition, any information about our roadmap outlines our general product direction and is subject to change at any time without notice. It is for informational purposes only and shall not be incorporated into any contract or other commitment. Splunk undertakes no obligation either to develop the features or functionality described or to include any such feature or functionality in a future release.

Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data, Splunk Cloud, Splunk Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks belong to their respective owners. © 2017 Splunk Inc. All rights reserved.

Intro - Anthony Tellez

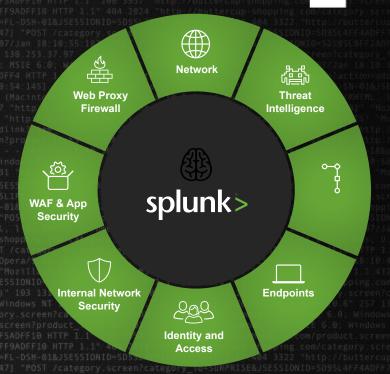
CISSP, CEH, CNDA, Sec+

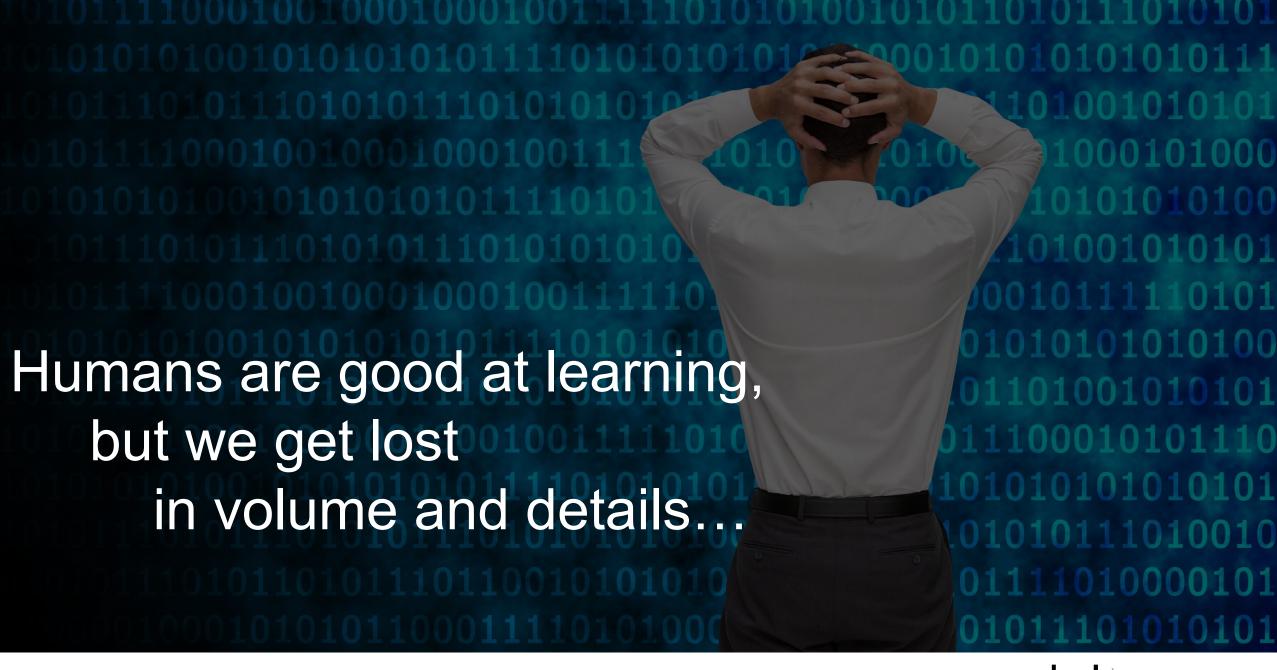
- | where _time@Splunk > 5y
- Previous:
 - U.S. Gov Contractor, Geospatial Analyst
- Specializations
 - Cryptography
 - Information Security Red Team
- Data Scientist
 - Security & Fraud Analytics
 - Data Visualization & Statistics
- Responsible for the relationship between emerging technologies and field organization
 - Acquisitions
 - Incubation
 - Product Development
- https://github.com/anthonygtellez/
- Fact: Spends 80% of the year on a plane traveling globally.

S D L L L

What is Splunk?

A T-shirt company that also sells software.





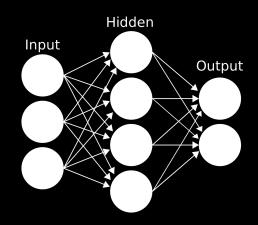
What is Machine Learning?

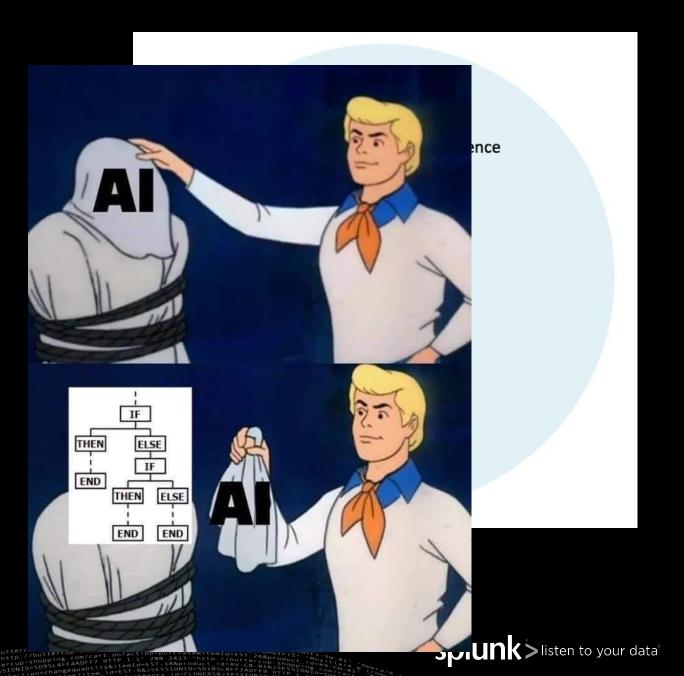
Machine Learning & Al

- A Function that maps features to an output
- Learning patterns in your data without being explicitly programmed

Types of ML

- Supervised
- Unsupervised
- Reinforcement





What ML & Al are not

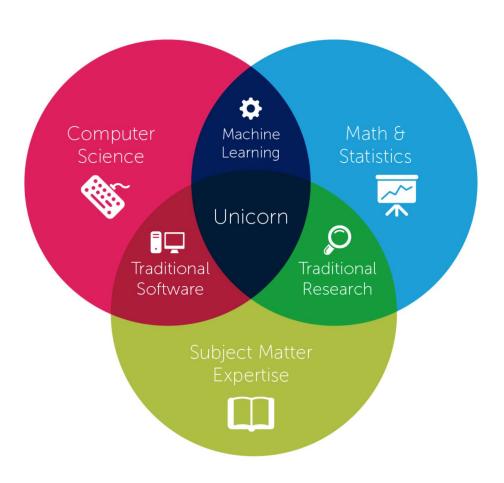
Machine Learning is not Magic

Garbage in = Garbage out

- Data Scientists spend 80% of their time cleaning, munging and collecting data
- Throwing a bunch of data at an algorithm will not result in solving all of your SOC issues
- Machine Learning requires a solid understanding of statistics and the scientific method

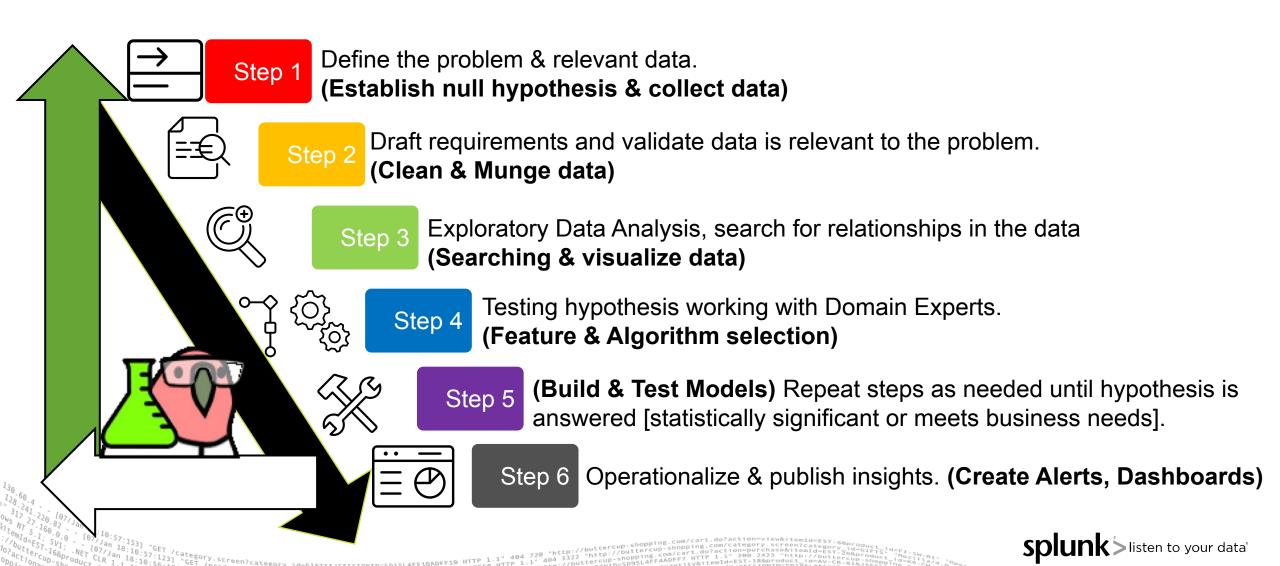
ML & Al require you to <u>understand the fundamental</u> <u>business problem</u> you want to solve.

ML is <u>not a replacement</u> for expert analysts, or engineers. ML requires Subject Matter Experts to enhance security operations and provide feedback to the models.



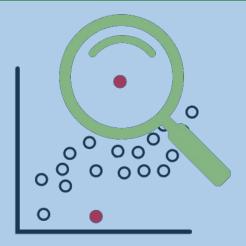
Data Science Process

What is the problem you're trying to solve?



What can ML do?

Anomaly detection

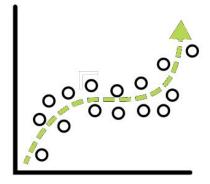


Deviation from past behavior

Deviation from peers
(aka Multivariate AD or Cohesive AD)

Unusual change in features

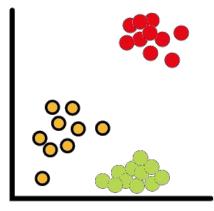
Predictive Analytics



Predicting Churn
Predicting Events
Trend Forecasting
Early warning of failure – predictive
maintenance

Recommendations (like Netflix)

Clustering

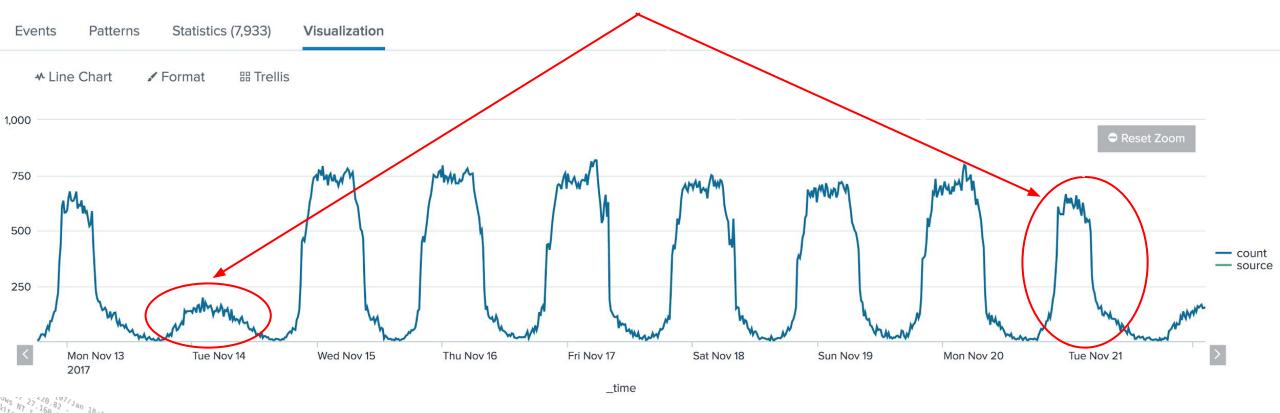


Identify peer groups
Event Correlation
Reduce alert noise
Event Analytics

Anomaly Detection: Reactive

Use Case: As a NOC/SOC Analyst, I must be alerted when an entity deviates from it's past observed behavior.

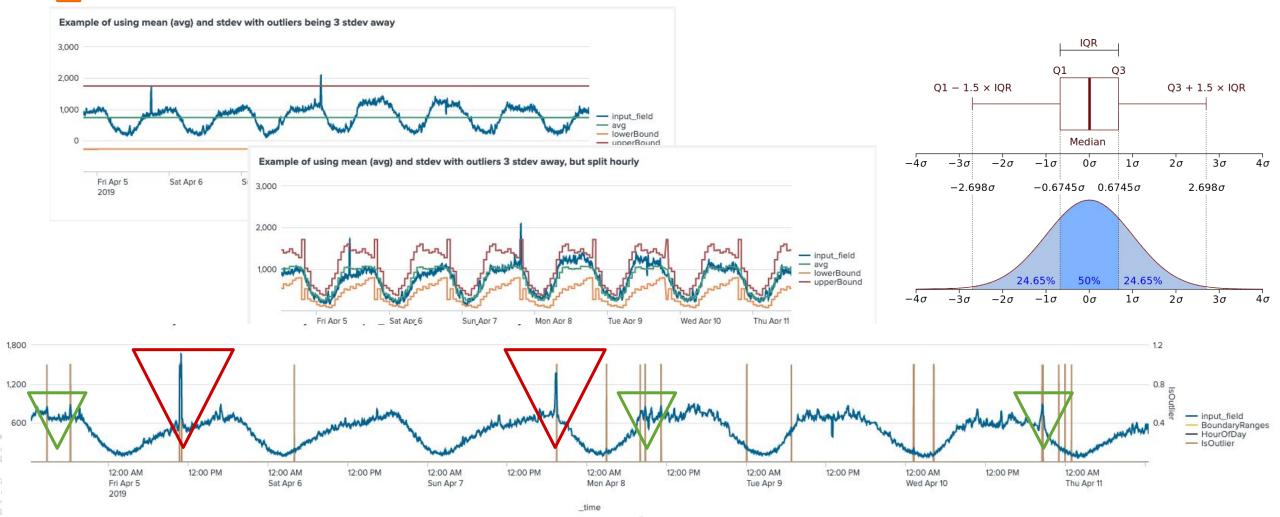
Different behavior on Tuesday Nov 14, returns to normal.



Probability Density Function

Useful Algorithm for determining where numerical outliers will exist.

- Determine shape of the data: Normal, Exponential, Gaussian KDE
- Can Understand the difference between Global Outliers & Local Outliers



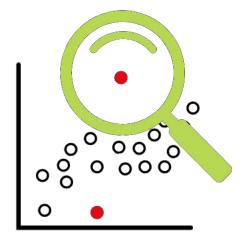
Probability Density Function

Use Case Examples:

- Account Enumeration/Credential Testing
 - Abnormally high number of failed logins from device or IP
 - Abnormally high number of account access from device or IP
- ATM Transactions / Wire Transfers
 - Anomalously high number of transactions by merchant
 - Anomalously high transaction by account
- Data Exfiltration & Access (Read & Write)
 - User with high reads & writes to database compared to others in the same role
 - Servers or users with high bytes_out in comparison to peers
- IP Theft
 - High number of requests to API service
 - Speed violations: accounts requesting data at machine
 7:153] "GET Deed reen?category inguistratures to the property of the p

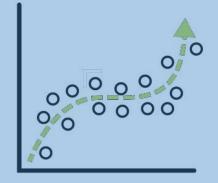
What can ML do?

Anomaly detection



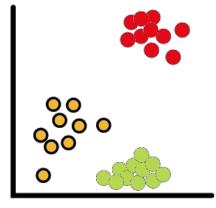
Deviation from past behavior
Deviation from peers
(aka Multivariate AD or Cohesive AD)
Unusual change in features

Predictive Analytics



Predicting Churn
Predicting Events
Trend Forecasting
Early warning of failure – predictive
maintenance
Recommendations (like Netflix)

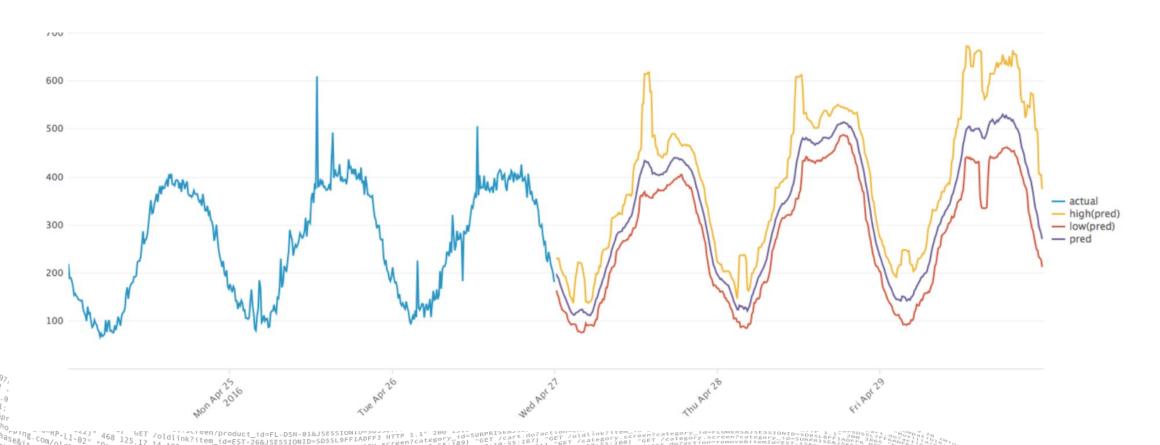
Clustering



Identify peer groups
Event Correlation
Reduce alert noise
Event Analytics

Predictive Analytics: Proactive

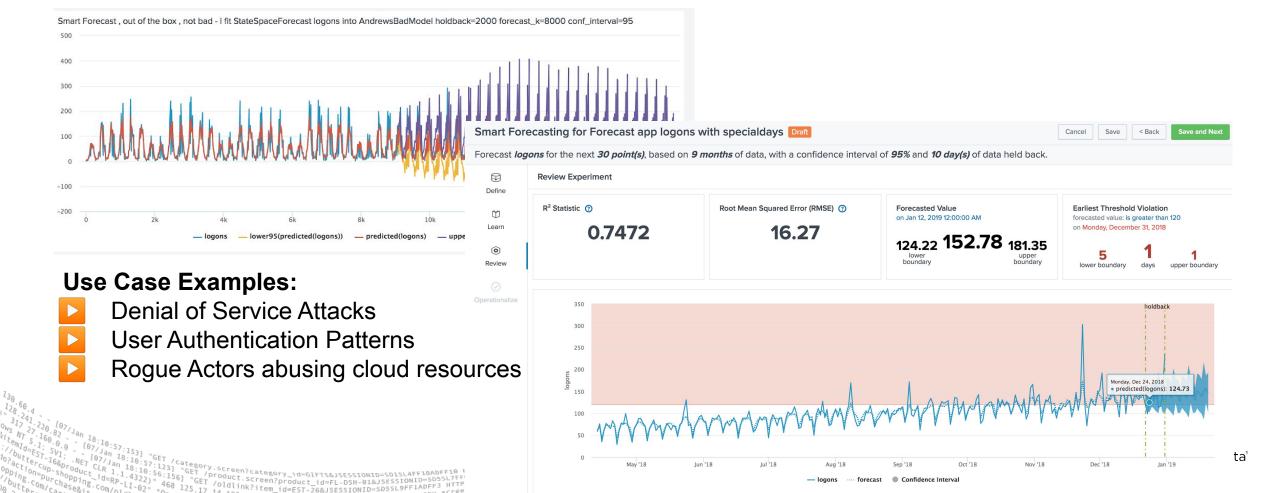
In real time, I update my cloud services usage forecast with the *meaningful patterns learned from the data*, showing me the next 3 days or so of demand (both the high, low, and actual predicted value).



StateSpace Algorithm

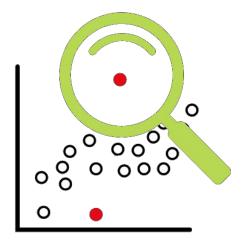
Forecasting learned behaviors that can be leveraged for anomaly detection

Applying forecasting algorithms to security data inform you of trends that are seasonal



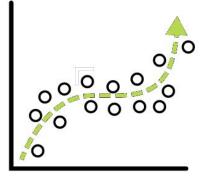
What can ML do?

Anomaly detection



Deviation from past behavior
Deviation from peers
(aka Multivariate AD or Cohesive AD)
Unusual change in features

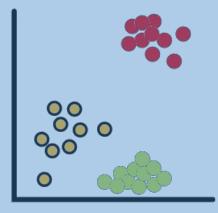
Predictive Analytics



Predicting Churn
Predicting Events
Trend Forecasting
Early warning of failure – predictive
maintenance

Recommendations (like Netflix)

Clustering

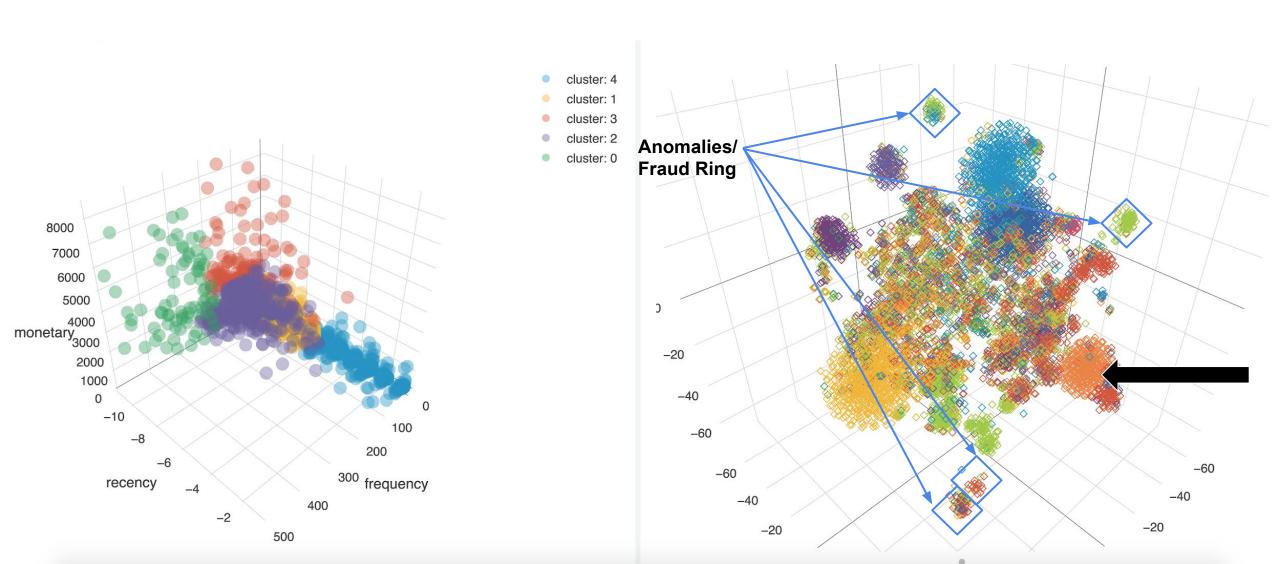


Identify peer groups
Event Correlation
Reduce alert noise
Event Analytics

Clustering: Investigation Outcomes from Data, not Assumptions

Traditional BI - Rule based Clustering

<u>Discovered Behavior Clusters - ML Based Clustering</u>



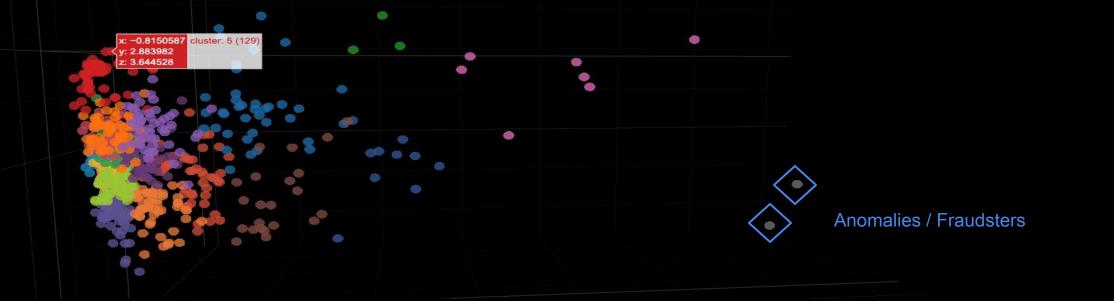
Clustering Analysis

Objective based look at data to discover where clusters exist based on numerous features.

With an infinite number of dimensions compress the information using Principal Component Analysis to discover where similar groups of entities exist.

Security Use Case - Example features:

- Payment Card Transactions Land Speed Violations, Frequency, Recency, Value of Purchases, Duration
- User Behavior Profiling AD Group, Systems Accessed, HR data (job function, performance, compensation, etc.)
- System Profiling Major OS, Patch Version, User Agent, Services & Software (ssh, sql, rdp, dhcp, etc.)



Exploratory DataAnalysis

Use Case Development & Data Science

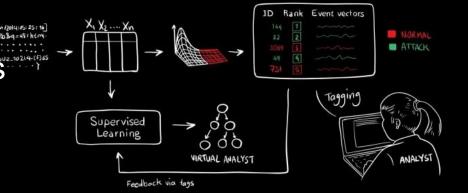
Security Patterns in IT Data

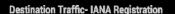
Use Case based approaches to ML/Analytics

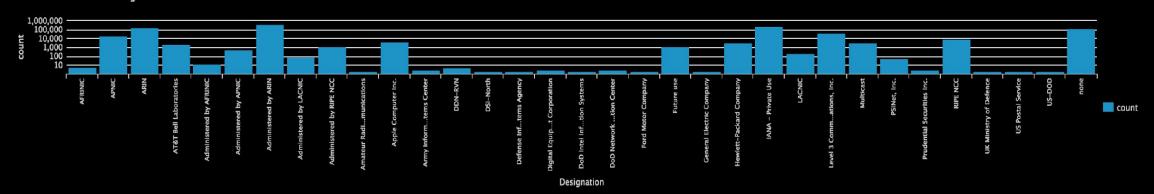
030 dasc based approaches to ME// thatytics						
What To Look For	Data Source					
Abnormally high number of file transfers to USB or CD/DVD	Operating system					
Abnormally high number of files or records downloaded from an internal file store or database containing confidential information	File server / Database					
Abnormally large amount of data emailed to personal webmail accounts or uploaded to external file hosting site	Email server / web proxy					
Unusual physical access attempts (after hours, accessing unauthorized area, etc.)	Physical badge records / Authentication					
Excessive printer activity and employee is on an internal watch list as result of demotion / poor review / impending layoff	Printer logs / HR systems					
User name of terminated employee accessing internal system	Authentication / HR systems					
IT Administrator performing an excessive amount of file deletions on critical servers or password resets on critical applications (rogue IT administrator)	Operating system /Authentication / Asset DB					
Employee not taking any vacation time or logging into critical systems while on vacation (concealing fraud)	HR systems / Authentications					
Long running sessions, bandwidth imbalance between client & server, Bad SSL Configurations	IPS / IDS / Stream					
Known cloud or malware domains, bad SSL Configurations	Threat Intelligence, Custom Lookups					
High Entropy Subdomains	Web proxy, DNS, Wiredata					

Visualization & Creating Context (EDA)

- Correlation is used to add context to data I
 - Security issues should not be described as bits, bytes, plaintext or pie charts.
- Correlation is used to add context to data
 - During EDA or to begin refining your hypothesis.







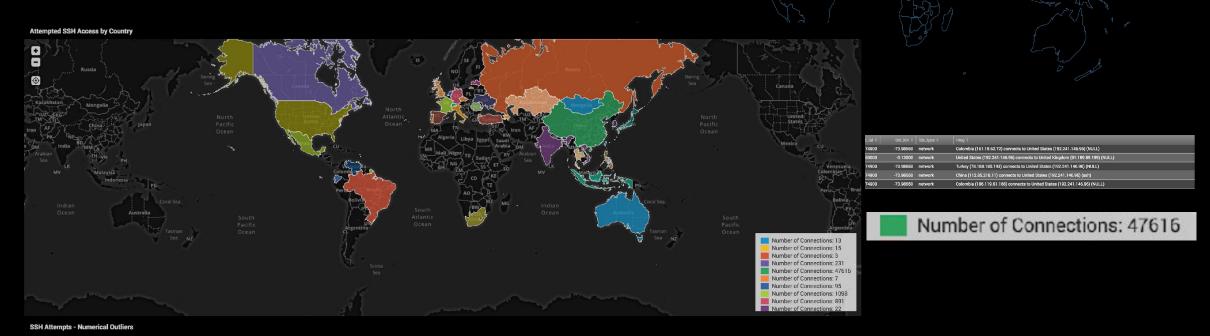
Geographical EDA - Visualization

ricata Flow Events Real-Time

Visualization useful for exploring multi-dimensional relationships.

Tells a story about the data you can't describe in tables.

"Where are connections 'originating', and how often am I seeing this activity?"



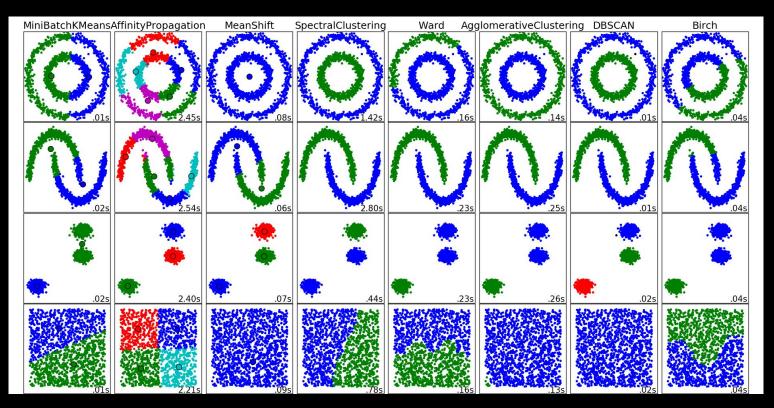
Machine Learning & Security Analytics

DGA Domains

Machine Learning & Al

Demystifying ML & Al

- Problem: DGA domains are computer generated pseudo-random character strings, blacklisting an infinite number of domains is not feasible.
- Hypothesis: "Are there patterns in domain generation algos that can be leveraged to identify these as threats and predict new domains in real-time?"



Domain Generating Algorithms (DGA)

What's DGA?

"A Domain Generating Algorithm (DGA) is a program or subroutine that provides malware with new domains on demand or on the fly."

Challenges to detect DGAs:

- Static matching runs against potentially infinite blacklist entries O(∞)
- Regex can narrow down this list, but still hard to compute and find rules (and define exceptions for rules)
- Unknown unknowns?
- Want to get fuzzy?
- Good use case for Statistics/ML!

Example of DGAs:

domain 0

iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea

ifferfsodp9ifjaposdfjhgosurijfaewrwergwea

ayylmaotjhsstasdfasdfasdfasdfasdfasdf

lazarusse.suiche.sdfjhgosurijfaqwqwqrgwea

sdfjhgosurijfaqwqwqrgwea

Example IoCs for Wannacry

(<u>https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf)</u>

Splunk > listen to your data

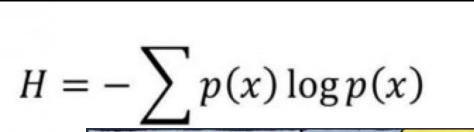
EDA for hunting DGA type activities

How is DGA used by attackers?

- DNS Water Torture
 - Botnet sends queries with 16 letters randomly prepended to the victim's domain.
 - xyuiasdfcosic.www.halpme.com
 - alkdfejenjasd.www.halpme.com
- C&C Beaconing Activity (Dynamic DNS)
 - Advanced malware uses a Domain Generation Algorithm (Random Subdomain)
 - d0290d00xasdf.no-ip[.]org
- Data Exfiltration
 - DNS Tunneling (Query)
 - dnscat.912701a98e9bde415c4ad70007beaf54d2
 - dnscat.925401a98ebe0cf540b20d001a4b5e726494b001bb4c192bb68fe73c000bf7c1c0e
- **Statistical Techniques to hunt for these activities:**
 - Shannon Entropy of DNS Query or HTTP destination
 - Character Length of DNS Query or HTTP destination

Shannon Entropy for DGA Hunting

- What is Shannon Entropy?
 - "... a measure of uncertainty in a random variable"
- How does it help us find malware and anomalous activity?
 - The more random a string is, the higher its calculation of randomness.
 - aaaaa.com (Score 1.8)
 - Google.com (Score 2.6)
 - Ic49f66b73141b5c1.com (Score 4.1)
 - Domains and subdomains with high entropy are good indicators of malicious behavior.
 - We can filter to domains or subdomains with a score above 3 or 4.

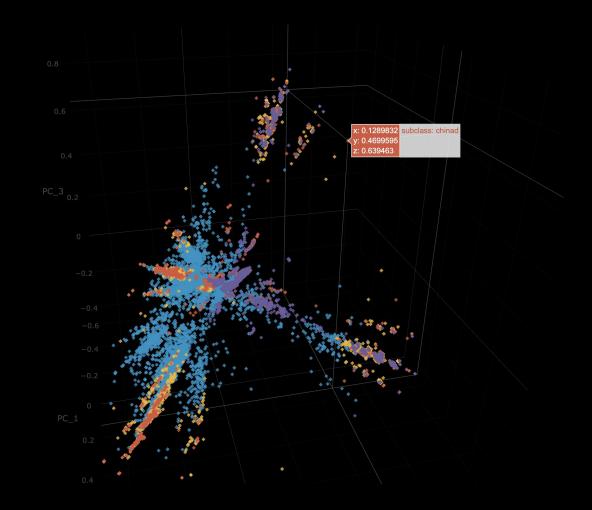


Text Mining Approach

n-gram distribution + principal component analysis

n-gram model is a type of probabilistic language model for predicting the next item in such a sequence in the form of a (n - 1)-order Markov model.

Englis	h Bigrams		Domain Bigrams		
LETTER	FREQUENCY) ()	LETTER	FREQUENCY	
th	0.03883	1	in	0.01702	
he	0.03681	//	er	0.01550	
in	0.02284		an	0.01333	
er	0.02178	//	re	0.01290	
an	0.02141		es	0.01271	
re	0.01749		ar	0.01188	
nd	0.01572		on	0.01135	
on	0.01418		or	0.01051	
en	0.01383		te	0.01017	
at	0.01336	\	al	0.00976	
ou	0.01286		st	0.00921	
ed	0.01276		ne	0.00921	
ha	0.01275	1	en	0.00897	



https://en.wikipedia.org/wiki/N-gram

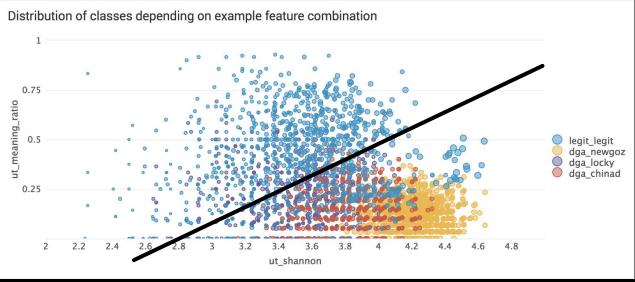
https://www.semanticscholar.org/paper/Detecting-DNS-Tunnels-Using-Character-Frequency-Born-Gustafson/c7cc7c16e8952facae1e

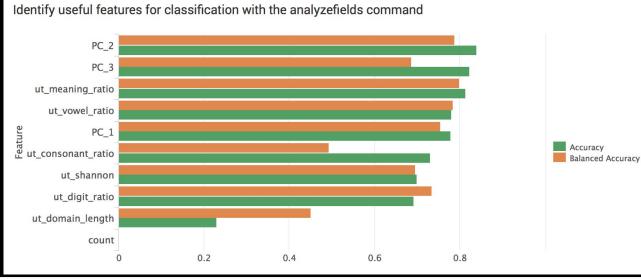
4dfb0dd768a4504cd5cb

Feature Engineering

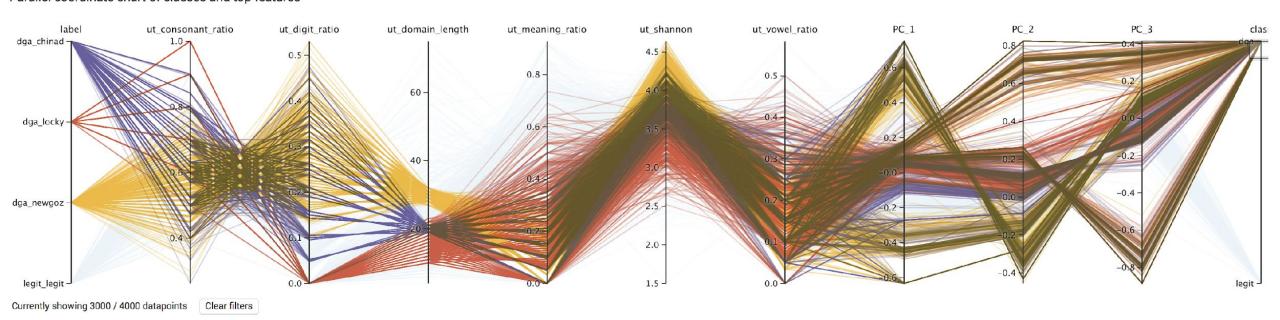
domain \$	class 0	subclass 0	ut_consonant_ratio 🗘	ut_digit_ratio 🗘	ut_domain_length 0	ut_meaning_ratio ‡	ut_shannon 0	ut_vowel_ratio ‡	PC_1 ≎	PC_2 0	PC_3 0
lvmaehe1voogfbss.net	dga	chinad	0.600	0.050	20.000	0.300	3.784	0.300	0.502	-0.304	0.092
1amn1a519ort3p12o09111e6288k.com	dga	newgoz	0.281	0.531	32.000	0.156	3.925	0.188	-0.358	-0.008	0.181
fiaxbg19j4wxu16sacop1su49dx.org	dga	newgoz	0.516	0.258	31.000	0.226	4.196	0.226	0.102	0.763	0.415
fspfffyddxni.pl	dga	locky	0.900	0.000	15.000	0.067	3.107	0.067	0.044	0.072	-0.066
ulpkn41fwor3pyqv9551j4f35c.com	dga	newgoz	0.600	0.333	30.000	0.067	4.282	0.100	-0.362	-0.001	0.177
aaqa93u5uybd1nbe.net	dga	chinad	0.500	0.200	20.000	0.300	3.684	0.350	0.659	-0.385	0.117
hao6m700qnro7d3y.cn	dga	chinad	0.526	0.316	19.000	0.105	3.827	0.158	-0.063	0.013	-0.019
1y1j69jb62wpg1h58kdp3mb8n2.org	dga	newgoz	0.600	0.400	30.000	0.067	4.282	0.033	0.178	0.823	0.404
play.googleapis.com	legit	legit	0.600	0.000	19.000	0.579	3.471	0.368	-0.222	-0.085	0.037
051i8937btzxhotb.info	dga	chinad	0.476	0.333	21.000	0.286	4.011	0.190	0.049	0.117	-0.125
							« prev	1 2 3 4 5	6 7	8 9	10 next »

- More text based features can significantly improve your machine learning models
 - Be wary of overfitting!
- Examples feature engineering ideas
 - (e.g. count of subdomains, age of domain registration, rating/scoring from threatlists for known malicious domains etc.)





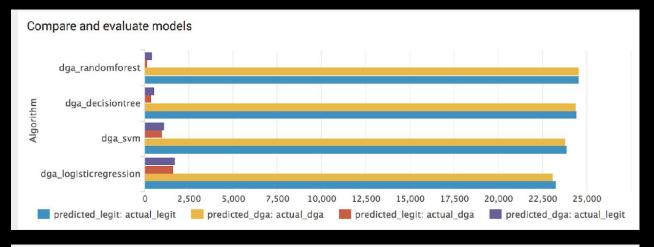
Parallel coordinate chart of classes and top features

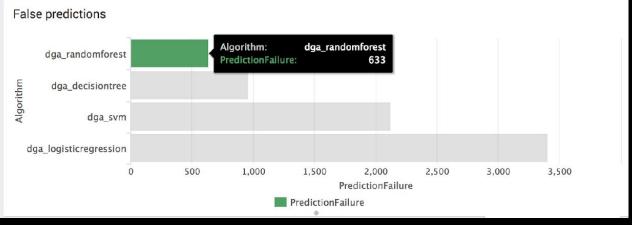


Training & Testing Models

Selecting the right algo

- Goal of machine learning is to enhance security operations not add to the "alert fatigue".
- Some Algorithms will be better than others for certain types of problems
- Minimize False Positives
- Accept/Reduce risk(s) associated with False Negatives





Operationalize

Use the model against new data!

Improve Model

Human in the Loop Feedback

- Not every alert or prediction is going to be correct.
- This is where SMEs are needed to provide feedback to the model for retraining to increase the accuracy.
- SMEs can also help engineer new features as malware evolves and tactics change

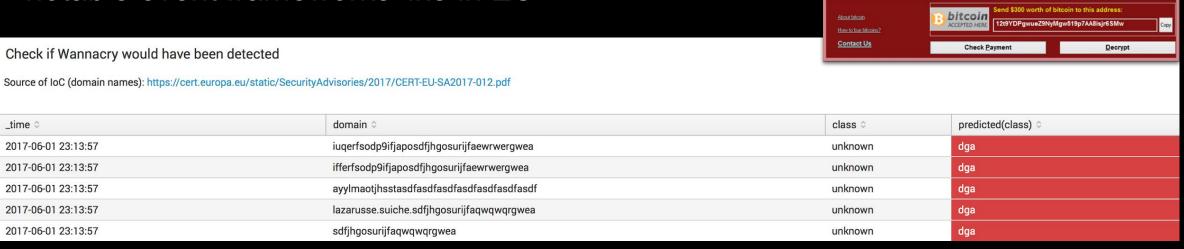
	time \$	datetime ©	class 0	domain \$	key_domain 🌣
1	1505852183.609000	09/19/17 22:16:23	legit	dimmhfj.xyz	LEGIT DGA
2	1505852180.980000	09/19/17 22:16:20	legit	rvxoudaurvjf.info	LEGIT DGA
3	1505852159.000000	09/19/17 22:15:59	dga	1qntxfs13eloj8hdbokd1qddfqt.org	LEGIT DGA
4	1505852157.000000	09/19/17 22:15:57	dga	nuvc6amdxse1vbtu.biz	LEGIT DGA
5	1505852154.000000	09/19/17 22:15:54	dga	qeuxctlwjmg.info	LEGIT DGA
6	1505852147.000000	09/19/17 22:15:47	dga	14fb5x4pu2zmu12eulks162u7b3.com	LEGIT DGA
7	1505852137.000000	09/19/17 22:15:37	dga	f3upm510ybndfqycfcz1ajbghu.org	LEGIT DGA
8	1505852136.000000	09/19/17 22:15:36	dga	1v31si318e57gk1gdcsi1l4t5m9.com	LEGIT DGA
9	1505852134.000000	09/19/17 22:15:34	dga	un905fm8dfb9etmx23m8sy5y.net	LEGIT DGA
10	1505852132.000000	09/19/17 22:15:32	dga	m3e3ytfvqgtj1wv1d3ka0zf3j.net	LEGIT DGA
				« prev 1	2 3 4 5 6 7 8 9 10 next»

Reality check: Detect Unknown Unknowns?

Example WannaCry

Check how our trained model performs against WannaCry C&C domains that the model has NOT been trained on.

Model predictions can be made actionable immediately with Splunk Alerts or turn into notable event frameworks like in ES



Ooops, your files have been encrypted!

Many of your documents, photos, videos, databases and other files are no longer accessible because they have been encrypted. Maybe you are busy looking for a way to

ecover your files, but do not waste your time. Nobody can recover your files without

Sure. We guarantee that you can recover all your files safely and easily. But you have

You can decrypt some of your files for free. Try now by clicking < Decrypt>.

You only have 3 days to submit the payment. After that the price will be doubled. Also, if you don't pay in 7 days, you won't be able to recover your files forever. We will have free events for users who are so poor that they couldn't pay in 6 months

Payment is accepted in Bitcoin only. For more information, click <About bitcoin >.

Please check the current price of Bitcoin and buy some bitcoins. For more information,

After your payment, click < Check Payment>. Best time to check: 9:00am - 11:00am

And send the correct amount to the address specified in this window.

But if you want to decrypt all your files, you need to pay.

What Happened to My Computer? Your important files are encrypted.

Can I Recover My Files?

not so enough time.

How Do I Pay?

click < How to buy bitcoins>.

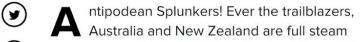
5/16/2017 00:47:55

5/20/2017 00:47:55

Ø6:23:57:37

Splunk CTF – July 25th 2019

Brisbane | Sydney | Melbourne | Canberra | Adelaide | Perth | Hobart | Darwin | Auckland | Wellington



ahead for our Australia & New Zealand Boss of the SOC (BOTS) Day held on July 25, 2019. Splunk

Recently held its North American BOTS day in June, with hundreds of participants right across the country. Technically we did it first, but we're happy to give our North American family credit (for now).

What is Boss of the SOC?

pera/9.01 (Windows NT 5.1; U; en)" 539 10.2.1.44 [07/Jan 18:10:42:109] "GET 12.130.60.4 [07/Jan 18:10:57:153] "GET /category poneview&itemId=EST-6 product_id=FI-SW-01" "Opera/9.20 (Windows NT 6.0; U; en)" 559 128.241.220.82 [07/Jan 18:10:57:123] "GET /product ry.screen?category_id=GIFTS" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)" 317 27.160.0.0 [07/Jan 18:10:56:156] "GET /oldlink?item ase&itemId=EST-26 product_id=K9-CW-01" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)" 468 125.17.14.100 http://buttercup-shopping.com/cart.do?action=addtocart&itemId=EST-16&product_id=RP-LI-02" "Opera/9.20 (Windows NT 6.0; U; en)" 766 13

Thank You

splunk>

```
"Oper
                                                                                          idegory.screen?Der
                                                                               Lategory ing. com/a.
                                                                                inference tegory in the second second
                                                                                 (Windows NT 6; 0; id=AV-SB-02; 0;
                                                                                   do?action=ce.
                         #/cart.1" 40.
#/cart.1" 40.
#/froduct_id=AV-SB
#/froduct_id=AV-SB
58078.233.243 - SB
58078.233.243 - SB
58078.233.243
        158product_133.243 -SB
158product_133.243 -SB
131.178.233.243 -SB
131.21ntosh; U; Intellation (Macintosh; U; Intellation)
                                89 82.24J.
" "Mozilla/4.36
" 200 1901 ".0 6
" 200 ty ith
              creen?category
                                                 n?category/ideior
n?category/ideior
-US) Appley/ideior
-US) Appley/ideior
-US) Appley/ideior
           creen.

; en-US) ABBURWEDK

; ttercup-shopewebK

JADFF2 HTTP PRINGER

TEDDY&JSE; 1".
                   ADFIZION POSTEST
en-us) POST
cup-shopppin
```

Install ML Toolkit

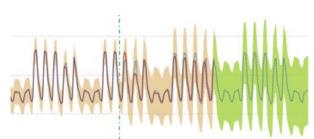
Step 1: install ML Toolkit app

https://splunkbase.splunk.com/app/2890

Step 2: install Python for Scientific Computing add-on

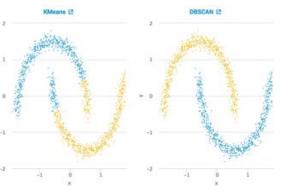
https://splunkbase.splunk.com/app/2890/#/details

Step 3: restart Splunk



That's it! Explore the ML Toolkit:

Prediction, Outlier Detection, Forecasting, Clustering Showcase examples for IT/Security/Business/IoT use cases Assistants: use your own data, build models, view in search



Resources

who I owe credit to:

- Philipp Drieger: DGA App & Content https://splunkbase.splunk.com/app/3559/
 - Conf17 Presentation Recording –
 http://conf.splunk.com/files/2017/recordings/automating-threat-hunting-with-machine-learning.mp4
- Mike Fisher: Building a crystal ball
 - Conf16 Presentation –
 https://conf.splunk.com/files/2016/slides/building-a-crystal-ball-forecasting-future-values-for-multi-cyclic-tim e-series-metrics-in-splunk.pdf
- Macy Cronkrite: Anomaly Hunting with Splunk
 - Conf16 Presentation https://conf.splunk.com/files/2016/slides/anomaly-hunting-with-splunk-software.pdf
- Xander Johnson & Zidong Yang: ML API
 - Conf17 Presentation –
 http://conf.splunk.com/files/2017/slides/advanced-machine-learning-using-the-extensible-ml-api.pdf
- Andrew Stein
 - General ML advice & mentoring

References & Resources

- Spurious Correlations http://www.tylervigen.com/spurious-correlations
- PCR A New Flow Metric http://qosient.com/argus/presentations/Argus.FloCon.2014.PCR.Presentation.pdf
- Data Driven Security http://datadrivensecurity.info/
- Doing Data Science http://shop.oreilly.com/product/0636920028529.do
- Hunting the Known Unknowns (with DNS) https://conf.splunk.com/speakers/2015.html#search=Kovar&
- IDS Evasion w TTL http://insecure.org/stf/secnet_ids/secnet_ids.html
- Applying Machine Learning to Network Security Monitoring http://www.mlsecproject.org/#conference-presentations
- Scikit-Learn http://scikit-learn.org/
- Machine Learning Toolkit https://splunkbase.splunk.com/app/2890/
- URL Toolbox https://splunkbase.splunk.com/app/2734/

